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The three-dimensional linear stability of a rectilinear vortex of elliptical cross-section 
existing as a steady state in an irrotational straining field is studied numerically in 
the case of finite strain. It is shown that the instability predicted analytically for weak 
strain persists for finite strain and that the weak-strain results continue to be 
quantitatively valid for finitc strain. The dependence of the growth rates of the 
unstable modes on the strain and the axial-disturbance wavelength is discussed. It 
is also shown that a three-dimensional instability is always more unstable than a 
two-dimensional instability in the range of parameters of most interest. 

1. Introduction 
Moore & Saffman (1971) demonstrated that in the theory of inviscid incompressible 

flow a steady rectilinear uniform vortex of elliptical cross-section could exist in a 
uniform straining field in unbounded fluid. We wish to study the three-dimensional 
linear instability of the Moore-Saffman vortex and discuss the dependence of several 
unstable modes on the strain and the axial wavelength. Our results are obtained 
numerically and extend previous asymptotic and perturbation analyses to the case 
of finite strain. 

Our results are intended to shed further light on the fundamental mechanisms for 
the three-dimensional instability of general vortex arrays. The computations of 
Pierrehumbert (1980) and Pierrehumbert & Widnall (1982) on the three-dimensional 
stability of a single straight row and doubly periodic infinite arrays of vortices with 
both top-hat and continuously distributed vorticity are important pioneering studies. 
I n  a previous paper (Robinson & Saffman 1982), we discussed the three-dimensional 
instabilities of the single row, the staggered double row and the symmetric double 
row of vortices using the BiotAavart formulation with a suitable cutoff to compute 
the self-induced motion of each vortex. This is an asymptotic formulation which is 
restricted to long-axial-wavelength disturbances and well-separated vortices and 
gives unstable modes relating to the mutual interactions of the vortices. I n  the 
present paper we shall discuss the effect of strain and finite area on the BiokSavart 
long-axial-wavelength unstable mode. Furthermore, mutual interaction effects are 
small for axial-disturbance wavelengths on the order of the vortex core, and the 
primary mechanism for instability is the interaction of the vortex core with the 
steady-state straining field of the other vortices in the array. For this reason we 
discuss the effect of finite strain on the short-axial-wavelength instability first 
predicted for weak strain by the arguments of Widnall, Bliss & Tsai (1974) and 
demonstrated qualitatively and quantitatively by the perturbation analyses of Moore 
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FIGURE 1 .  Cross-section of steady uniform elliptical vortex in an irrotational straining field. 

& Saffman (1975) and Tsai & Widnall (1976). The weak strain analysis has proved 
successful in explaining the observed instability of vortex rings (Widnall & Tsai 1977; 
Saffman 1978). 

We outline in $52 and 3 the properties of the exact steady solution and the known 
linearized stability results for special cases. I n  $4 and 5 we discuss the formulation 
of the linear stability equations and corresponding regularity and boundary conditions. 
The numerical method used to solve the stability equations for the normal modes 
and growth rates is described in $6. I n  $ 7  we discuss the results of the computations. 

2. The steady state 
Moore & Saffman (1971) obtained a steady solution of the equations of motion for 

an inviscid incompressible flow in which a rectilinear vortex with uniform vorticity 
wo, aligned along the axis, exists in a uniform irrotational straining field of infinite 
extent. Unsteady two-dimensional solutions have been given by Kida (1981) for 
elliptical deformations. His solutions have since been discussed further and extended 
to the case of a three-dimensional irrotational straining field (Neu 1983). However, 
our interest lies in the three-dimensional instabilities of the steady vortex. The steady 
solution is shown schematically in cross-section in figure 1.  The solution for the stream 
function in the interior of the ellipse is 

where a and b are respectively the semimajor and semiminor axes of the ellipse. 
Matching to the irrotational outer flow, as described in detail by Moore & Saffman, 
gives a requirement on the shape of the ellipse. If 0 = a / b  then 

(2.2) 
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The strain as a function of 0 has a single maximum, e / w ,  z 0.15, a t  O,, z 2.9. For 
e/wo 5 0.15 there are two possible steady solutions, one more elongated than the 
other, and none for e/wo greater than this value. 

It is convenient to express the interior flow field in elliptic-cylinder coordinates 
defined by 

(2.3) i 
x = ccoshccos7 

y = csinhtsinq 

(0 < 6 < C O ) ,  

(-n < 7 < n), 
h2 = ?jc2(cosh 26- cos 27), 

where c = (a2-b2): is the semifocal length. The line element h is the same for both 
the 6- and 7-coordinates. The steady interior flow is 

2W 
U I  

hU - - = @,c2(1-f(e)cosh2<))sin27, 
f -  a7 (2.4) 

ay 
1l at- 

hU = - - = $J, c2( 1 - f (0)  cos 27) sinh 2[, (2.5) 

wheref(8) = (@- l)/(e2+ l ) ,  and Us and UV are velocities in the c- and 7-directions 
respectively. The above solution if valid for 0 < < to, where E0 defines the boundary 
of the ellipse. Note that hUs and hU7 are smooth functions of the coordinates 6 and 
7. This is true in general. That is, suppose in Cartesian coordinates we have a vector 
function 

u = Ux(G y, 2) i+ U,(X, y, z ) j +  U,(X, y, 2) k, (2.6) 

where U,, U,  and U, are all smooth functions of x, y and z with convergent Taylor 
series. If we write this vector in terms of elliptic-cylinder coordinates then 

c 
U =  (U,sinhCcosq+ U,cosh(sin7)-[ 

h 
c + (U ,  sinh cos 7 - U, cosh sin 7)  - f + U,2. (2.7) 
h 

Thus hUE and hUq are smooth functions of 6 and 7. It should perhaps be emphasized 
that the velocities are not related to functions of the complex variable (+ i l l  as in 
inviscid irrotational-flow theory. 

3. Linearized stability - limiting cases 
We describe briefly here the known results for the stability of the Moore-Saffman 

vortex to two- and three-dimensional disturbances. These results are limited to the 
boundaries of the parameter space which we wish to study. In  their original paper 
Moore & Saffman computed the stability of the vortex to two-dimensional disturbances 
characterized by a mode number m > 0 giving the angular dependence in elliptic- 
cylinder coordinates, In  this case the growth rate u is given by the formula 

6 2  2me 
- @; = -1 4 { (-- ez+i ly -(!yrn}, e + i  (3.1) 

and in the case m = 1 we have 

(3.2) 
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FIGURE 2. Roots of the dispersion relation for angular mode number m = + 1 (dotted line) and 
m = - 1 (solid line) for uniform circular vortex. Circles indicate unstable crossing points and crosses 
stable crossing points in weak strain. (After Tsai & Widnall (1976).) 

Thus them = 1 mode is always unstable and corresponds to  a translation of the ellipse 
outward along one of the principal axes of strain. For m > 1 and 8 < O,,, < 0 and 
the vortex is thus structurally stable to two-dimensional disturbances. Moore & 
Saffman also computed the effect of long-axial-wavelength three-dimensional dis- 
turbances on the m = 1 mode and concluded that the effect is to reduce the growth 
rate of the instability. 

The 8 = 1 case was discussed many years ago by Kelvin (1880). For disturbances 
proportional to exp (crt + im@ + ikz) the dispersion relation giving u(k ,  rn) for waves 
on a rectilinear uniform circular vortex is 

(3.3) 

where m is the angular mode number in cylindrical polar coordinates, k is the axial 
wavenumber, a is the radius of the vortex, and g2 = (ka)2(1-y2)/y2, with 
y = $-ig/q,. The function J is the Bessel function of the first kind and K is the 
modified Bessel function of the second kind. According to Kelvin, roots of (3.3) are 
pure imaginary and give the frequency of stable oscillations of the unstrained vortex. 
The roots arise from solutions with y in ( -  1 , l )  so that -icr/w, = I m  ((T/o,) lies in 
( -  1 -&, 1 -%). There are an infinite number of roots for each m and k .  Figure 2 
shows a plot of some of the Jml = 1 roots as a function of ka. 

Moore & Saffman (1975) pointed out the possibility of parametric instability in a 
weak straining field for values of k near the crossing points shown in figure 2 ,  and 
Tsai & Widnall (1976) calculated the effect for a uniform vortex. They found that 
a t  some of the crossing points the eigenvalues would become unstable and gave 
quantitative values for the change in the eigenvalues and the width in k of the region 
of instability. The results of Tsai & Widnall allow precise checks to be made on the 
numerical method used to calculate the modes of instability for finite values of the 
strain. 
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4. Linearized stability equations 
The three-dimensional stability of the finitely strained Moore-Saffman vortex will 

be studied by finding normal modes of the linearized equations. As the flow inside 
the vortex is rotational, the resulting normal modes will be rotational and the interior 
flow must be described by the Euler equations. Outside the vortex the flow is 
irrotational, and owing to Kelvin's theorem the perturbed motion will be irrotational 
also. We can therefore describe the exterior flow by a velocity potential satisfying 
Laplace's equation. We have also boundary conditions matching the interior to the 
exterior flow. Since the surface bounding the rotational fluid is material, we obtain 
the usual kinematic condition specifying normal velocity. Continuity of tangential 
velocity on the boundary of the vortex insures continuity of the pressure. The 
linearized boundary conditions are derived by expansion about the undisturbed 
boundary of the exact nonlinear boundary condition satisfied on the disturbed 
boundary. The choice of coordinate system is thus crucial to the simplicity of the 
analytical statement of the linearized boundary condition as well as its numerical 
implementation. Since the boundary of the vortex is an ellipse, i t  is natural to use 
elliptic-cylinder coordinates in both the exterior and interior of the ellipse as this 
makes implementation of the boundary conditions on the surface of the vortex 
extremely simple. There is a disadvantage in that a coordinate singularity is 
introduced at 1x1 = c in the interior of the ellipse. However, this poses little difficulty, 
as will be shown in $5. 

The Eulerian equations of motion in elliptic-cylinder coordinates can be derived 
from standard relations for orthogonal curvilinear coordinates (Batchelor 1967). We 
define u5, uB, U, and p to be respectively the velocities in the subscripted coordinate 
directions and the pressure. However, it  is convenient for numerical purposes to 
rewrite the equations so that the dependent variables are smooth functions of 6 and 
17. To this end we set U1 = hu, and U 2  = hu, and, for convenience of notation, x1 = 6 
and x2 = 7. This allows the use of summation convention for the indices 1 and 2. The 
resulting equations are 

(4.3) 

We now look for normal modes of the linearized equations by taking perturbations 
of the following form, 

(4.4) 

- 
u, = U,(x,, x2)  + u,(xl, x2) eat+ikz, 

uz = uz(21, 2 2 )  e 

p = P(x,, x2)  +p(x,, x2)  eat+ikz. 

n = 1,2 ,  
a t f i k z  - 

, 

The steady-state velocities (2.4), (2.5) and pressure are represented by capitalized 
quantities. Inserting (4.4) into the equations and dropping all terms of second order 
in the perturbations, we obtain a set of linear equations for the perturbations ul,  u2, 
u, and p .  Solving for u, in the continuity equation (4.1), we can eliminate u, explicitly 
by substitution into the third equation of motion (4.3). This gives an expression for 



456 A. C. Robinson and P. G. Xaffman 

p ,  which can then be eliminated through the first two equations of motion (4.2). The 
resulting system of coupled linear equations for u1 and u2 can be expressed as follows : 

{A,j-k2(C,j+Dij)}~j = a{k26,j-B,j}uj, i = 1,2,  (4.5) 

The above constitute the linearized disturbance equations for the interior flow. 

Laplace's equation. Proceeding as before we let 
The exterior irrotational flow is described by a velocity potential $ satisfying 

= 0 ( x l ,  x2)  +Q,(zl, x2)  eat+ika. The 
perturbation Q, satisfies 

(4.6) 

and the solutions of this equation via the method of separation of variables are 
products of Mathieu functions. 

5. Regularity and boundary conditions 
We describe first the regularity conditions to be satisfied by the normal modes at 

6 = 0 due to the singularity in the coordinate system. It is clear that  all dependent 
variables must be 2n-periodic in x2 = 7, the angular coordinate. I n  the radial 
coordinate x1 = 5 the situation is more complicated. At 5 = 0 we must require that 
the velocity be smooth in a non-singular coordinate system. By inserting values for 
x and y given by (2.3) into (2.7) and examining the numerators in (2.7), i t  is clear 
(allowing 6 < 0 for the moment) that  the barred velocities must satisfy 

(5.1) I 
- 
U m ( t , r )  =-zm(-t, -7)i m =  192, 
%(5> r )  = q - 5 ,  -7). 
- 

This implies the following relations at 6 = 0 : 

for all non-negative integers n. Since the steady flow satisfies these relations and the 
relations are linear, the perturbations must also satisfy them. 

The linearized boundary conditions a t  the surface of the vortex require some care. 
We parametrize the surface of the vortex by 

(5.3) 

where F is the small quantity. The kinematic condition giving the motion of the 
boundary of the vortex is then 

D 
- (6- to - F ( y )  
Dt 

5 = to + F ( y )  eut+ikz, 

) = O a t  6 = &, + F ( 7 )  (5.4) 

The dynamic boundary condition requires continuity of tangential velocity on the 
disturbed boundary. Substitution of the assumed form of the velocities and expanding 
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in small quantities about 6, gives the following conditions at to (see Moore & Saffman 
1971): 

-- ” u2 = woh2F, 
a7 

(5.7) 

The first three conditions are exactly the equations derived by Moore & Saffman for 
the two-dimensional stability problem. By use of the continuity equation, the last 
condition (5.8) can be seen to be equivalent to continuity of axial perturbation 
velocity. Since we have assumed no steady axial flow in the vortex, i t  should be clear 
that the addition of (5.8) to (5.5)-(5.7) gives the correct set of linearized boundary 
conditions for the full three-dimensional stability problem as no coupling of steady- 
state and perturbation quantities occurs in the axial direction a t  first order. 

I n  the exterior region we require the perturbation velocity to decay exponentially 
as x2+y2+ 00. The appropriate solutions to the reduced equation (4.6) are products 
of Mathieu functions, Ken([ ;  q)ce,(p; - q )  and Ko,([;q) se,(q; - q ) ,  where we have 
used the notation of Abramowitz & Stegun (1972) and the parameter q = f(ck),.  

6. Numerical method 
The computation of the eigenvalues is accomplished by means of a straightforward 

collocation scheme similar to the kind recommended by Boyd (1978) for eigenvalue 
problems of our type and used with success for example by Pierrehumbert & Widnall 
(1982) in their calculations. 

An examination of the coefficients in the linearized equations (4.5) and (4.6) shows 
that the only rpdependence is through either cos 24 or sin 24. This indicates that  the 
normal modes must separate into n- and 2n-periodic solutions just as in the standard 
analysis of the periodic solutions of Mathieu’s equation. We will study only 2n-periodic 
unstable modes, and, ofthese, specifically the ones that correspond to the zero-crossings 
of the eigenvalues in the case of the circular vortex. These angular modes have 
azimuthal dependence (mi = 1 in (3.3). There are several reasons to  limit the 
computations to  this restricted subcase. As noted in $3,  there exists an infinite number 
of pure imaginary roots for each m and k in the unstrained case. For the 2n-periodic 
case we may have for special values of k a pair of physically distinguishable modes 
with the same frequency provided that the angular mode numbers satisfy 
(m,,m,) = (1, - l ) ,  (1,3),  ( - 1 ,  -3) ,  (3 ,5) ,  etc. This is seen from the discussion of 
the location of the roots given in $3. For the n-periodic case we have similarly 
(ml,m,) = (1,2),  (0, - 2 ) ,  (2,4),  (-2, -4), etc. There is an  infinite number of such 
crossing points for each pair (ml, m2). Moore & Saffman (1975) give a good discussion 
of why such crossing points may become unstable a t  small strain and they showed 
that, under assumptions satisfied by the MooreSaffman vortex, the zero-crossing 
eigenvalues of the JmJ = 1 modes would become unstable. For eigenvalues which cross 
a t  non-zero values the effect of strain may or may not be destabilizing. Tsai & Widnall 
(1976) gave specific results for the (ml, m,) = ( + 1 ,  - 1 )  case as in figure 2 .  They found, 
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however, that the growth rates of the instabilities for the eigenvalues at non- 
zero-crossings were an order of magnitude smaller than the zero-crossing instabilities. 
I n  the (ml,  m,) = (0,2),  (0, - 2) cases the eigenvalues do not cross a t  zero frequency 
but do cross at non-zero frequencies, so that these may also become unstable. 
Practical considerations dictate that  some decision be made on the eigenmodes and 
eigenvalues to be calculated. We expect only those modes with the least structure 
in both the azimuthal and radial directions and with the largest growth rates to be 
of physical relevance since presumably viscous effects come into play a t  the smaller 
scales. We thus make the plausible assumption that a t  finite strain the most 
important unstable modes continue to be the ones arising from the zero-crossings of 
the Iml = 1 modes a t  infinitesimal strain and that the instabilities which may arise 
from other resonances in both the 2n- and x-periodic cases a t  non-zero-crossing points 
of the eigenvalues are of less importance. 

Recalling the conditions ( 5 . 2 )  on the interior solutions, we now represent the 
2x-periodic modes in the following form : 

h2F = c& cos (2m + 1) 7 + d4, sin (2m + 1) 7,  

with the summation convention used for m = 0,1,  . . . , N A  - 1 and n = 0, 1,  . . . , NR- 1 .  
T, are standard Tchebyscheff polynomials. With this representation we now require 
that the interior equations (4.5) be satisfied a t  the points (ti, y j ) ,  where 

.. 

To accomplish this, the equations represented in compact form by (4.5) are fully 
expanded and the explicit singularities in the equations removed by multiplying 
through by he. We also require that the boundary conditions (5.5)-(5.8) be satisfied 
a t  the points q3. 

The above collocation scheme leads to  a generalized eigenvalue problem for the 
growth rates CT and eigenvectors x = (c;,, d;,, c k n ,  d:,, cL, d k ,  c&, d&)T of the form 

AX = CTBX, (6.3) 
with the matrices A and B coming from the collocation equations. The size of the 
system is N = 4NA(NR + 1) .  Eigenvalues of interest were computed initially using the 
EISPACK QZ-algorithm (Garbow et al. 1977) and the grading portion of the 
preprocessor described by Ward (1981). Since the desired eigenvalues are small, i t  
was convenient to solve for l/cr rather than cr. The QZ-algorithm tends to produce 
the largest eigenvalues first, so that in this way i t  was a simple matter to  isolate the 
appropriate eigenvalues and eigenvectors. Once a single eigenvalue and eigenvector 
of interest were found then the parametric dependence on I% and 0 was determined 
by extending the system through the normalization condition xTx- 1 = 0 and 
solving for both the eigenvalue and eigenvector via a Newton-chord method. The 
accuracy of the computations was checked by increasing the number of modes in the 
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truncated expansions and by comparison with limiting results. A useful rule of thumb 
which became apparent was that the accuracy of a given eigenvalue was on the order 
of the size of the coefficients of the higher-order modes in the ui expansions. 

Some comment should be made concerning the computation of the Mathieu 
functions. The characteristic values as well as the functional values of the angular 
Mathieu functions were computed from their Fourier-series representation using 
appropriate routines and/or modifications of the routines given by Clemm (1969) ; 
see also Sale (1970). These routines are based on algorithms given by Blanch (1966). 
The radial Mathieu function can be calculated once the corresponding characteristic 
values for the periodic solutions are known. The equation for the radial Mathieu 
function is 

__- d2y (a+ 2q cash 2g) y = 0, 
dE2 

where a is the characteristic value from the angular equation. Making the change of 
variable z = &et, the equation becomes 

which shows the correspondence with the modified Bessel function. Now with the 
normalization that we have used in the representation (6.1) we shall need to know 
the values of y ’ ( g ) / y  and y ” ( g ) / y  a t  6 = 6, in order to implement the boundary 
conditions. The second ratio is given directly from (6.4). The first ratio is equal to 
zp ( z ) ,  where p ( z )  = y ’ ( z ) / y  and p satisfies the corresponding Ricatti equation 

for this ratio. An asymptotic analysis of the Ricatti equation as z+oo gives the 
following behaviour : 

m 

p -  Z AnzPn as z + + c o ,  (6.7) 
n-o 

where A , = - l ,  A , = - l  2 ’  A 2 = -$(a-& A,  = -A2,  

A,  = -$[;(a - t )  -;(a-+)z + q 2 ]  

and 

There are actually two asymptotic solutions. The other solution has leading behaviour 
+ 1 rather than - 1 .  We choose the minus sign corresponding to the exponentially 
decaying solution in y .  To compute the value of p(z,) we integrate backwards from 
some sufficiently large value z, using the starting value given by the asymptotics. 
A variable-step Taylor-series routine was written especially to perform this integration. 
The number of terms in the asymptotic expansion and the value of z, was chosen 
according to the usual optimal asymptotic approximation rule (Bender & Orszag 
1978). This gave a very good estimate for p(z,). Although the desired solution is not 
asymptotically stable for increasing z ,  it  is the stable solution for decreasing z ,  and 
one would expect to find good results a t  zo even for a poor starting value provided 
that z ,  $ zo. The values computed by the routine were compared with tables of Bessel 
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FIGURE 3. Values of clo, ell, and u12 versus axial wavenumber k for 0 = 1.1, 1.5, 2.0, 2.5 and 2.9. 
Solid (open) triangles give predictions of Tsai & Widnall (1976) for magnitude and width of 
instability about k(ab)k = 2.5 (4.35). Vertex of each triangle is plotting point. Dotted lines give 
prediction of nl0 growth rate based on the Biot-Savart cutoff theory. 

and Mathieu functions (Abramowitz & Stegun 1972; Wiltse & King 1958). A further 
self-consistency check was made by computing p’ numerically using the values of 
p output from the routine and checking these against the exact value. Excellent 
agreement was obtained over a wide range of parameter values. 

The equations are non-dimensionalized in the following manner. The timescale is 
defined by the value of the vorticity in the undisturbed vortex, and the lengthscale 
by the geometric mean of the semimajor and semiminor axes. Then we have 13 = a / w o  
and 6 = k(ab)i. The value of to is given by the formula to = +log[(O+ l) / (O--  l)],  and 
c2/ab  is equal to (Oz - l)/O. The quantities c and k appear in the equations only as a 
product squared, which gives q = i ( ck )2  = f2(02-  1)/48. 

7. Results and discussion 
We now describe the results of the computation of the growth rate of the 

zero-crossing eigenvalues as a function of the axial wavenumber and the axis ratio. 
The eigenvalues u are pure real in the cases to be described. Figure 3 shows the values 
of the growth rate for values of O in the range 1 .l-2.9 NN OCr. Also shown are the values 
of the growth rate and the region of instability for each mode as predicted by the 
perturbation analysis of Tsai & Widnall (1976). It is seen that the numerical results 
match the perturbation results extremely well for small values of the strain. The effect 
of larger strain is weak relative to the perturbation results but several interesting 
features are observed. Note that the value of the axial wavenumber of maximum 
instability decreases slightly with increasing strain for the modes with one and two 
internal radial nodes starting a t  6 = 2.5 and 4.35 respectively. These modes are 
labelled all and gI2, where the first subscript denotes the angular dependence and 
the second the number of radial nodes for the nearly circular case. These modes meet 
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FIQURE 4. Pure two-dimensional rl,, mode for 0 = 1.1. 

FIQURE 5. Pure two-dimensional rl0 mode for 0 = 2.9. 

at 8 x 1.4 as the strain is increased. The growth-rate curves then cross as seen in 
the figure for 8 = 1.5 and apparently also cross a t  larger 8, although these details were 
not resolved. The ull maximum is always the largest. The gl,, and the gll growth-rate 
curves also meet at about the value of the maximum strain. Notice in particular that 
the total range of unstable wavenumbers is very large for large strain and that the 
magnitudes of the growth rates for a significant portion of the wavenumber space 
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FIGURE 6. Short axial wavelength vll mode for h = 2.4 amd I9 = 1.5. 

IY 

FIGURE 7. Short axial wavelength vll mode for h = 2.2 and I9 = 2.5. 

are quite comparable. This suggests the possibility that observed instabilities in real 
flows might be more sensitive to the properties of external disturbances than to the 
structure of the vortex. 

The long-wavelength gl,, mode as predicted by the Biot-Savart cutoff theory is also 
shown in figure 3. The dott’ed lines indicate the growth rate 

where we have replaced the lengthscale for the radius of the vortex in the cutoff theory 
by the lengthscale (ab):. The value of y z 0.5772 is Euler’s constant. Note the 
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FIGURE 8. Short axial wavelength gL2 mode for 4 = 4.35 and 8 = 1.1. 

excellent agreement for small values of the strain a t  small wavenumber. The growth 
rate decreases with increasing Ic owing to the stabilizing effect of the vortex 
self-induction. For finite strain, however, the most-unstable long-wavelength mode 
is no longer purely two-dimensional but has a maximum at a finite value of the axial 
wavelength. Nevertheless, this effect is quite small and the general characteristics 
predicted by the cutoff theory are retained for the long-wavelength axial mode even 
for finite strain. This is a satisfying result relative to previous asymptotic studies, 
since it indicates that  the cutoff theory, which assumes circular vortices moving in 
external strain, gives the correct long-wavelength stability behaviour for steady 
vortex configurations in which the size of the vortices relative to their separations 
need not be very small and the vortices may take on an elliptical cross-section. It is 
particularly noteworthy that the spurious instability predicted by the cutoff theory 
is not qualitatively different from the real instability of the ull mode, which explains 
why some incorrect theories of vortex-ring instability gave apparently correct results. 

Of further interest is the character of the eigenfunctions themselves. For this purpose 
we show in figures 4-7 the surface of the deformed vortex where the surface is given 
by (5.3) and F is given from the eigenfunction computation. I n  the case of the pure 
two-dimensional m = 1 mode we give the equation explicitly as 

where the signs correspond to the plus and minus eigenvalues respectively and E is 
a sufficiently small arbitrary amplitude. It is clear that the unstable mode represents 
the translation of the ellipse outward along one of the two outgoing principal axes 
of strain as mentioned by Moore & Saffman (197 1). Figures 4 and 5 show the disturbed 
vortex in cases of weak and strong external strain. For the short-axial-wavelength 
modes, we plot a three-dimensional view of the surface of the vortex given by the 
normal-mode calculation. Figures 6 and 7 give a plot of the deformed vortex for the 
ull instability for representative values of k and 8. Figures 8 and 9 give similar views 
for the uI2 instability, Note in all cases the definite bulging and orientation in the 
direction of the outgoing strain. The spanwise length shown is five times the vortex 
cross-sectional lengthscale. 
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FIGURE 9. Short axial wavelength gI2 mode for = 4.3 and 0 = 2.9. 

0.20 I I I I I 

k (ab)i 

FIGURE 10. Values of cI0 and cI1 for 0 >, 8,, versus axial wavenumber k for 
0 = 2.9 (solid), 3.5 (dashed) and 4.0 (dotted). 

We look now at the steady state for 8 2 2.9 and show the variation of the 
parametric instability with 8. The flow is not unstable to two-dimensional structural 
instabilities ofn-periodic type, but i t  is of interest to  see how the growth rate for the 
three-dimensional disturbances varies as 8 increases, a t  least until the three- 
dimensional and the two-dimensional growth rates are comparable. Figure 10 shows 
for the three values of 8 the dependence of the cl0 and crI1 modes on k .  With regard 
to the dependence on 8, the most-unstable long-wavelength mode is seen to decrease 
in magnitude while stJill maintaining its three-dimensional character, while the 
short-wavelength mode is seen to  increase initially as 8 increases above 8,, and then 
decreases as 8 is increased further. For 8 = 4.0 we can see from (3.1) with m = 2 that 
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the growth rate for the two-dimensional structural instability is u = 0.1776 and is 
thus of the same order as the three-dimensional instability. 

I n  summary we have shown that the effect of finite strain on the three-dimensional 
2n-periodic modes studied is to increase the growth rates above the values predicted 
by the perturbation theory and make them practically independent of wavenumber. 
The effect of large deformation in the steady solution thus does not ameliorate the 
three-dimensional instability but removes the tuning or tendency to select a 
particular wavenumber. For 0 less than about 4.0 the three-dimensional instabilities 
have larger growth rates than the two-dimensional instabilities. It is also seen that 
the characteristics of the long-wavelength mode are not significantly affected by 
finite strain. This further justifies the use of the BiotSavart  formulation as a useful 
tool to analyse three-dimensional long-wavelength instabilities of rectilinear vortex 
arrays. 

This work was supported by NASA Lewis Research Center (NAG 3-179) and the 
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